Personalizzare il salto verticale fra due paragrafi

Personalizzare il salto verticale fra due paragrafi

Messaggioda salvo.tringali il gio 1 nov 2012, 11:08

Poniamo che, per qualche ragione, voglia poter impostare un salto verticale personalizzato fra tutti i paragrafi di un testo composto in LaTeX, e che voglia farlo globalmente (piuttosto che localmente utilizzando il comando \vskip). Come fo'?

Esempio ha scritto:% Paragrafo 1
Loosely speaking, a semicategory can be seen as a category where we do not require the existence of a local identity at each object. This places semicategories among the most general and ``minimalist'' of all mathematical structures. Thus, it won't surprise that people with conflicting feelings about categories will have much more of them about semicategories. It is however puzzling to learn from private conversations and online readings that people actively working in category theory and related topics are inclined to dismiss any visible interest in semicategories based on the statement that these can be turned into categories, with no loss of information, by throwing in identities (a process sometimes referred to as \emph{unitization}), to the point of claiming that the former are not really more general than the latter. All the more puzzling because the statement sounds rough, to say the least.

% QUI VORREI IMPOSTARE un salto verticale più ampio di quello predefinito ma senza usare il \vskip

% Paragrafo 2
In formal terms, what would it mean that the unitization of a semicategory does not imply any loss of information? As pointed out by B. Steinberg (City College of New York) on MathOverflow, it is known, e.g., that the only finite monoids with no non-trivial homomorphic images are the finite simple groups and the two-elements monoids (one of these actually being a simple group), as it follows from the classification of congruence-free finite semigroups. However, there exists a whole infinite family of finite semigroups with no non-trivial homomorphisms not included on this list. Doesn't this count as a significant loss of information due to the structural rigidity induced by the presence of identities?
"Che bella storia", disse l'Alchimista. | Whatever can be encoded by syntax shouldn't be left to semantics. | Homomorphisms are to algebraic structures as seminorms are to ordered structures.
Avatar utente
salvo.tringali
 
Messaggi: 5354
Iscritto il: mar 17 giu 2008, 19:46
Località: Karl-Franzens-Universität, Graz (AT)

Messaggioda ma_go il gio 1 nov 2012, 11:14

Codice: Seleziona tutto
\parskip

potrebbe funzionare: vedi qui. non ho provato, però.
ma_go
 
Messaggi: 271
Iscritto il: gio 19 mag 2011, 13:24

Messaggioda salvo.tringali il gio 1 nov 2012, 11:28

Yes, it works! Many thanks.
"Che bella storia", disse l'Alchimista. | Whatever can be encoded by syntax shouldn't be left to semantics. | Homomorphisms are to algebraic structures as seminorms are to ordered structures.
Avatar utente
salvo.tringali
 
Messaggi: 5354
Iscritto il: mar 17 giu 2008, 19:46
Località: Karl-Franzens-Universität, Graz (AT)


Torna a LaTeX e Asymptote

Chi c’è in linea

Visitano il forum: Nessuno e 1 ospite